УТВЕРЖДАЮ

Зам.директора по УВР УрСЭИ (филиал) ОУП ВО «АТиСО»
И.Ю.Нестеренко

МЕТОДИЧЕСКИЕ УКАЗАНИЯ ПО ВЫПОЛНЕНИЮ ПРАКТИЧЕСКИХ ЗАДАНИЙ И САМОСТОЯТЕЛЬНОЙ РАБОТЫ ПО ДИСЦИПЛИНЕ (МОДУЛЮ)

Теория вероятностей и математическая статистика

Направление подготовки

38.03.01Экономика

Профиль подготовки

Бухгалтерский учет, анализ и аудит Финансы и кредит

Квалификация выпускника «Бакалавр»

Кафедра: Гуманитарных, естественнонаучных и математических дисциплин

Разработчики программы:

К.т.н., доцент Сафронова И.В.

Оглавление

1.	ПЛАНИРУЕМЫЕ РЕЗУЛЬТАТЫ ОБУЧЕНИЯ ПО ДИСЦИПЛИНЕ
	(МОДУЛЮ), СООТНЕСЕННЫЕ С ПЛАНИРУЕМЫМИ РЕЗУЛЬТАТАМИ
	ОСВОЕНИЯ ОБРАЗОВАТЕЛЬНОЙ ПРОГРАММЫ
	1.1 Планируемые результаты обучения по дисциплине
	1.2 Результаты освоения образовательной программы:
2.	СОДЕРЖАНИЕ ДИСЦИПЛИНЫ (МОДУЛЯ), СТРУКТУРИРОВАННОЕ
	ПО ТЕМАМ (РАЗДЕЛАМ) С УКАЗАНИЕМ ОТВЕДЕННОГО НА НИХ
	КОЛИЧЕСТВА АКАДЕМИЧЕСКИХ ИЛИ АСТРОНОМИЧЕСКИХ ЧАСОВ
	И ВИДОВ УЧЕБНЫХ ЗАНЯТИЙ;
	2.1 Содержание дисциплины (модуля)
3.	ПЕРЕЧЕНЬ УЧЕБНО-МЕТОДИЧЕСКОГО ОБЕСПЕЧЕНИЯ ДЛЯ
	САМОСТОЯТЕЛЬНОЙ РАБОТЫ ОБУЧАЮЩИХСЯ ПО ДИСЦИПЛИНЕ
	(МОДУЛЮ)6 ОСНОВНАЯ И ДОПОЛНИТЕЛЬНАЯ УЧЕБНАЯ ЛИТЕРАТУРА,
4.	ОСНОВНАЯ И ДОПОЛНИТЕЛЬНАЯ УЧЕБНАЯ ЛИТЕРАТУРА,
	НЕОБХОДИМАЯ ДЛЯ ОСВОЕНИЯ ДИСЦИПЛИНЫ (МОДУЛЯ)Ошибка!
	Закладка не определена.
5.	РЕСУРСЫ ИНФОРМАЦИОННО-ТЕЛЕКОММУНИКАЦИОННОЙ СЕТИ
	"ИНТЕРНЕТ", НЕОБХОДИМЫЕ ДЛЯ ОСВОЕНИЯ ДИСЦИПЛИНЫ
	(МОДУЛЯ)Ошибка! Закладка не определена.
6.	ИНФОРМАЦИОННЫЕ ТЕХНОЛОГИИ, ИСПОЛЬЗУЕМЫЕ ПРИ
	ОСУЩУСТВЛЕНИИ ОБРАЗОВАТЕЛЬНОГО ПРОЦЕССА ПО
	ДИСЦИПЛИНЕ (МОДУЛЮ), ВКЛЮЧАЯ ПЕРЕЧЕНЬ ПРОГРАММНОГО
	ОБЕСПЕЧЕНИЯ И ИНФОРМАЦИОННЫХ СПРАВОЧНЫХ СИСТЕМ
7.	ТИПОВЫЕ КОНТРОЛЬНЫЕ ЗАДАНИЯ ИЛИ ИНЫЕ МАТЕРИАЛЫ,
	НЕОБХОДИМЫЕ ДЛЯ ОЦЕНКИ ЗНАНИЙ, УМЕНИЙ, НАВЫКОВ И
	(ИЛИ) ОПЫТА ДЕЯТЕЛЬНОСТИ, ХАРАКТЕРИЗУЮЩИХ ЭТАПЫ
	ФОРМИРОВАНИЯ КОМПЕТЕНЦИЙ В ПРОЦЕССЕ ОСВОЕНИЯ
	ОБРАЗОВАТЕЛЬНОЙ ПРОГРАММЫ12

1. ПЛАНИРУЕМЫЕ РЕЗУЛЬТАТЫ ОБУЧЕНИЯ ПО ДИСЦИПЛИНЕ (МОДУЛЮ), СООТНЕСЕННЫЕ С ПЛАНИРУЕМЫМИ РЕЗУЛЬТАТАМИ ОСВОЕНИЯ ОБРАЗОВАТЕЛЬНОЙ ПРОГРАММЫ

Целями (целью) изучения дисциплины являются (является). Цель:

является освоение базовых понятий классической теории вероятностей, математического анализа случайных величин и математической статистики и их приложения в экономических науках, компьютерных технологиях, моделировании и в финансовой сфере.

Залачи:

раскрыть содержание основных понятий, категорий и положений теории вероятностей и математической статистики, предусмотренных планом;

изучить способы применения вероятностно-статистического аппарата при решении задач, рассмотрении примеров, выполнении упражнений;

изучить возможности использования вероятностно-статистических методов в прикладных задачах (математическое моделирование);

раскрыть элементарные принципы и методы построения стохастических моделей обучения.

1.1 Планируемые результаты обучения по дисциплине.

Освоение дисциплины направлено на формирование у студентов следующих компетенций:

ОПК-3 - Обладает способностью выбрать инструментальные средства для обработки экономических данных в соответствии с поставленной задачей, проанализировать.

1.2 Результаты освоения образовательной программы:

В результате освоения дисциплины студент должен:

Знать: основные понятия теории вероятностей и математической статистики, основные законы распределения случайных величин, методы оценивания неизвестных параметров распределений, основы проверки статистических гипотез.

Уметь: применять стандартные методы и модели к решению вероятностных и статистических задач, обрабатывать статистическую информацию и получать статистически обоснованные выводы.

Владеть: основными принципами и методами обработки статистических данных, навыками применения статистических пакетов программ для анализа данных на ПЭВМ.

2. СОДЕРЖАНИЕ ДИСЦИПЛИНЫ (МОДУЛЯ), СТРУКТУРИРОВАННОЕ ПО ТЕМАМ (РАЗДЕЛАМ) С УКАЗАНИЕМ ОТВЕДЕННОГО НА НИХ КОЛИЧЕСТВА АКАДЕМИЧЕСКИХ ИЛИ АСТРОНОМИЧЕСКИХ ЧАСОВ И ВИДОВ УЧЕБНЫХ ЗАНЯТИЙ

2.1 Содержание дисциплины (модуля)

РАЗДЕЛ 1. ТЕОРИЯ ВЕРОЯТНОСТЕЙ

Тема 1. События и их вероятности

- 1.1. Определение понятия «вероятность»
- 1.2. Конечное вероятностное пространство
- 1.3. Понятие события
- 1.4. Операции над событиями
- 1.5. Простейшие свойства вероятностей
- 1.6. Классическое определение вероятностей
- 1.7. Геометрическая вероятность
- 1.8. Условные вероятности
- 1.9. Формула полной вероятности и формула Байеса

- 1.10. Независимость событий
- 1.11. Статистическая независимость

Тема 2. Дискретные случайные величины и их распределения

- 2.1. Счетное вероятностное пространство
- 2.2. Дискретные случайные величины
- 2.3. Схема Бернулли
- 2.3.1. Распределение числа успехов в n испытаниях
- 2.3.2. Наиболее вероятное число успехов
- 2.3.3. Номер первого успешного испытания
- 2.4. Математическое ожидание
- 2.5. Общие свойства математического ожидания
- 2.8. Индикаторы событий
- 2.9. Независимость случайных величин
- 2.10. Некоррелированность случайных величин
- 2.11.1. Пуассоновское приближение
- 2.11.2. Нормальное приближение
- 2.12. Неравенства Чебышева
- 2.13. Теорема Чебышева

Тема 3. Общие случайные величины

- 3.1. Общее определение вероятностного пространства
- 3.2. Случайные величины (общий случай)
- 3.3. Функция распределения случайной величины
- 3.4. Непрерывные случайные величины
- 3.4.1. Понятие непрерывной случайной величины
- 3.4.2. Примеры абсолютно непрерывных распределений
- 3.5. Числовые характеристики абсолютно непрерывной случайной величины
- 3.6. Нормальное распределение

Тема 4. Совместное распределение общих случайных величин

- 4.1. Совместная функция распределения, плотность
- 4.2. Математическое ожидание функции от случайных величин
- 4.3. Независимость случайных величин
- 4.4. О некоррелированных зависимых случайных величинах
- 4.5. Преобразования случайных величин
- 4.5.1. Преобразования одной случайной величины
- 4.5.2. Формула свертки. Композиция законов распределений
- 4.6. Многомерное нормальное распределение

Тема 5. Предельные законы теории вероятностей

- 5.1. Закон больших чисел
- 5.2. Центральная предельная теорема

РАЗДЕЛ 2. МАТЕМАТИЧЕСКАЯ СТАТИСТИКА

Тема 6. Вариационные ряды и их характеристики

- 6.1. Вариационные ряды и их графическое изображение
- 6.2. Средние величины
- 6.3. Показатели вариации
- 6.4. Начальные и центральные моменты вариационного ряда

Тема 7. Основы выборочного метода

- 7.1. Общие сведения о выборочном методе
- 7.2. Понятие оценки параметров
- 7.2.1. Среднее арифметическое выборочных значений как оценка математического ожилания

- 7.2.2. Свойства оценки дисперсии
- 7.2.3. Сравнение оценок
- 7.3. Оценка функций распределения и плотности

Тема 8. Точечные и интервальные оценки параметров распределений

- 8.1. Методы построения точечных оценок
- 8.1.1. Метод моментов
- 8.1.2. Метод максимального правдоподобия
- 8.1.3. Метод наименьших квадратов
- 8.2. Определение эффективных оценок с помощью неравенства Рао-Крамера-Фреше
- 8.3. Интервальные оценки числовых характеристик случайных величин
- 8.3.1. Доверительный интервал для математического ожидания нормального распределения при известной дисперсии
- 8.3.2. Доверительный интервал для математического ожидания нормального распределения при неизвестной дисперсии
- 8.3.3. Доверительный интервал для дисперсии нормального распределения

Тема 9. Проверка статистических гипотез

- 9.1. Статистическая гипотеза и общая схема ее проверки
- 9.2. Критерии согласия
- 9.2.1. Критерий согласия χ^2 -Пирсона
- 9.2.2. Критерий согласия Колмогорова-Смирнова
- 9.3. Критерии однородности
- 9.3.1. Критерий однородности Смирнова
- 9.3.2. Критерий Вилкоксона-Манна-Уитни
- 9.4. Гипотезы о числовых характеристиках случайных величин
- 9.4.1. Проверка гипотез о равенстве дисперсий случайной величины при известных математических ожиданиях
- 9.4.2. Проверка гипотез о равенстве дисперсий случайной величины при неизвестных математических ожиданиях
- 9.4.3. Проверка гипотез о равенстве математических ожиданий случайных величин при известных дисперсиях
- 9.4.4. Проверка гипотез о равенстве математических ожиданий случайных величин при неизвестных дисперсиях
- 9.5. Проверка гипотез о стохастической независимости элементов выборки
- 9.5.1. Критерий «восходящих» и «нисходящих» серий
- 9.5.2. Критерий стохастической независимости Аббе

РАЗДЕЛ 3. ОСНОВНЫЕ МЕТОДЫ СТАТИСТИЧЕСКОГО АНАЛИЗА

Тема 10. Дисперсионный анализ

- 10.1. Основные понятия дисперсионного анализа
- 10.2. Однофакторный дисперсионный анализ
- 10.2.1. Аддитивная модель однофакторного дисперсионного анализа
- 10.2.2. F-отношение. Базовая таблица однофакторного дисперсионного анализа
- 10.3. Понятие о многофакторном дисперсионном анализе
- 10.3.1. Модель данных при независимом действии двух факторов
- 10.3.2. *F*–отношение. Базовая таблица двухфакторного дисперсионного анализа при независимом действии факторов
- 10.3.3. Модель данных при взаимодействии факторов
- 10.4. Модели дисперсионного анализа со случайными факторами

Тема 11. Корреляционный анализ

- 11.3. Анализ парных статистических связей между количественными переменными
- 11.3.1. Диаграмма рассеяния. Эмпирическая линия регрессии

- 11.3.2. Измерение тесноты парной связи. Коэффициент корреляции
- 11.3.3. Проверка наличия корреляции. Интервальная оценка r_{xy}
- 11.3.4. Оценка тесноты нелинейной связи
- 11.4. Анализ множественных количественных связей
- 11.4.1. Множественный коэффициент корреляции
- 11.4.2. Частный коэффициент корреляции
- 11.5. Ранговая корреляция
- 11.5.1. Коэффициент ранговой корреляции Спирмена
- 11.5.2. Коэффициент ранговой корреляции Кендалла
- 11.5.3. Анализ множественных ранговых связей

Тема 12. Регрессионный анализ

- 12.1. Основные положения регрессионного анализа
- 12.1.1. Задачи регрессионного анализа
- 12.1.2. Многомерная нормальная регрессионная модель
- 12.1.3. Выбор общего вида функции регрессии
- 12.1.4. Оценивание параметров функции регрессии. Метод наименьших квадратов
- 12.2. Парная регрессионная модель
- 12.2.1. Стратегия регрессионного анализа
- 12.2.2. Линейная одномерная модель регрессии
- 12.2.3. Оценка точности регрессионной модели
- 12.2.4. Оценка значимости уравнения регрессии
- 12.3. Общий случай регрессии
- 12.3.1. Множественный линейный регрессионный анализ
- 12.3.2. Нелинейные модели регрессии

3. ПЕРЕЧЕНЬ УЧЕБНО-МЕТОДИЧЕСКОГО ОБЕСПЕЧЕНИЯ ДЛЯ САМОСТОЯТЕЛЬНОЙ РАБОТЫ ОБУЧАЮЩИХСЯ ПО ДИСЦИПЛИНЕ (МОДУЛЮ)

Тема 1. Классическая формула

Задание. Из 5 менеджеров и 6 бухгалтеров необходимо случайным образом сформировать комитет из 7 человек. Какова вероятность того, что в комитете окажутся четверо менеджеров и трое бухгалтеров?

Задание. В комитете из 7 человек нужно выбрать председателя и секретаря. Найти вероятность того, что ими окажутся два вполне определенных человека.

Вопросы для самопроверки.

- 1. События. Классификация событий.
- 2. Сумма и произведение событий.
- 3. Несовместные, независимые события. Полная группа событий. Противоположные события.
- 4. Вероятность события. Аксиомы.
- 5. Классическая формула вычисления вероятности события.

Тема 2. Основные теоремы

Задание. Из 30 вопросов, предложенных преподавателем, первый студент знает ответы на 20 из них, второй на 25 и третий на 15 вопросов. Найти вероятность того, что на предложенный наудачу преподавателем вопрос:

- ответит хотя бы один из этих студентов,
- ответят только двое из этих студентов.

Задание. Из 10 частных банков, работающих в городе, нарушения в уплате налогов имеют место в 6 банках. Налоговая инспекция проводит проверку трех банков, выбирая их из десяти банков случайным образом. Выбранные банки проверяются независимо один от другого.

Допущенные в проверяемом банке нарушения могут быть выявлены инспекцией с вероятностью p=0,8. Какова вероятность того, что в ходе проверки будет установлен факт наличия среди частных банков города таких банков, которые допускают нарушения в уплате налогов?

Задание В предыдущем примере налоговая инспекция установила факт наличия среди частных банков города таких банков, которые допускают нарушения в уплате налогов. Найдите вероятность того, что среди случайным образом отобранных трех банков оказалось два нарушающих уплату налогов.

Вопросы для самопроверки.

- 1. Сумма и произведение событий.
- 2. Несовместные события. Вероятность суммы событий, вероятность суммы несовместных событий.
- 3. Независимые события. Условная вероятность события. Вероятность произведения событий. Вероятность произведения независимых событий.
- 4. Полная группа событий. Гипотезы. Формула полной вероятности.
- 5. Формула Байеса.
- 6. Повторение испытаний. Формула Бернулли.
- 7. Вероятность появления хотя бы одного события.

Тема 3. Дискретная случайная величина

Задание Магазин получает товар от трех независимо работающих фирм. Вероятность поставки товара от первой фирмы равна 0,4, от второй - 0,3, от третьей -0,6. Составить распределение случайной величины X - числа полученных поставок, найти числовые характеристики и функцию распределения этой случайной величины.

Вопросы для самопроверки.

- 1. Случайная величина. Спектр. Дискретная случайная величина.
- 2. Закон распределения дискретной случайной величины. Условие нормировки. Многоугольник распределения.
- 3. Функция распределения. Вероятность попадания случайной величины на промежуток и в точку.
- 4. Математическое ожидание, дисперсия и среднее квадратическое отклонение дискретной случайной величины; формулы для их нахождения.
- 5. Биноминальное распределение и его числовые характеристики.
- 6. Распределение Пуассона и его числовые характеристики.

Тема 4. Непрерывная случайная величина

Задание Случайная величина X – годовой доход наугад взятого лица, облагаемого налогом. Задание Случаиная величина Λ – гообьой остоб тучайной величины имеет вид: 7, $f(x) = \begin{cases} x^{3,5} & \text{при } x \ge 7, \\ 0 & \text{при } x < 7. \end{cases}$

$$f(x) = \begin{cases} \overline{x^{3,5}} & npu \ x \ge 7 \\ 0 & npu \ x < 7. \end{cases}$$

Требуется:

- 1. определить значение параметра a,
- 2. найти функцию распределения F(x),
- 3. вычислить математическое ожидание m_x и среднее квадратическое отклонение $\sigma_{_{\mathrm{x}}}$
- 4. определить размер годового дохода x_1 , не ниже которого с вероятностью 0,6 окажется годовой доход случайно выбранного налогоплательщика.

Вопросы для самопроверки.

- 1. Непрерывная случайная величина. Плотность распределения. Условие нормировки.
- 2. Функция распределения. Вероятность попадания непрерывной случайной величины на промежуток через функцию распределения и плотность распределения.
- 3. Формулы для нахождения математического ожидания, дисперсии, среднего квадратического отклонения непрерывной случайной величины.
- 4. Равномерное распределение и его числовые характеристики.
- 5. Показательное распределение и его числовые характеристики.
- 6. Нормальное распределение и его числовые характеристики. Функция Лапласа, ее свойства. Правило трех сигм.

ТЕМА 5. СТАТИСТИЧЕСКОЕ РАСПРЕДЕЛЕНИЕ ВЫБОРКИ. ТОЧЕЧНЫЕ И ИНТЕРВАЛЬНЫЕ ОПЕНКИ.

Задание Выборочная проверка размеров дневной выручки оптовой базы от реализации товаров по 100 рабочим дням дала следующие результаты:

Таблица 1.

i	1	2	3	4	5	6	7	8
J_i	0 - 5	5 - 10	10 - 15	15-20	20 - 25	25 - 30	30 - 35	35 - 40
n_i	2	7	14	19	25	20	10	3

Здесь,

i - номер интервала наблюденных значений дневной выручки ($i = \overline{1,8}$);

 J_{i} границы і – го интервала (В условных денежных единицах);

 n_i - число рабочих деней, когда дневная выручка оказывалась в пределах i - го интервала; при этом очевидно, что $\sum_{i=1}^{n} n_i = n = 100$

Требуется:

- построить гистограмму частот;
- найти несмещенные оценки X_B и s^2 для математического ожидания и дисперсии случайной величины X (дневной выручки оптовой базы) соответственно;
- определить приближенно вероятность того, что в наудачу выбранный рабочий день дневная выручка составит не менее 15 условных денежных единиц.

Вопросы для самопроверки.

- 1. Генеральная и выборочная совокупности. Виды выборок. Статистическое распределение выборки.
- 2. Что понимается под эмпирической функцией распределения, как она строится.
- 3. Гистограмма, в чем состоит ее полезность.
- 4. Точечные оценки. Несмещенность, состоятельность, эффективность оценок.
- 5. Выборочная средняя, выборочная дисперсия, формулы для их нахождения.

Тема 6. Доверительный интервал. Критерий Пирсона

Задание В партии из 3000 изделий проверено 12 изделий. Среди них оказалось 3 бракованных изделия.

- 1. Найти доверительную вероятность того, что доля брака во всей партии отличается от доли в выборке не более чем на 2%.
- 2. Найти доверительный интервал, в котором с вероятностью 0,95 заключена доля брака во всей партии.
- 3. Определить объем выборки, необходимый для того, чтобы с вероятностью 0,95 доля брака во всей партии отличалась от доли в выборке не более чем на 2%.

Задание При выборочном опросе 100 жителей поселка о количестве поездок по железной

дороге, совершаемых ими в течение месяца, получены следующие данные:

Число	0-3	3-6	6-9	9-12	12-15	15-18	18-21	21-24	24-27	27-30	Итого
поездок	0 3	3 0	0)	7 12	12 13	15 10	10 21	21 27	2721	27 30	111010
Число	6	0	15	19	20	1.4	0	5	2	1	100
жителей	O	9	13	19	20	14	9)	2	1	100

Требуется:

- 1. Построить эмпирическую функцию распределения случайной величины X количества поездок в месяц для наугад взятого жителя поселка;
- 2. Найти доверительный интервал для оценки с надежностью 0,95 среднего значения случайной величины X.

Задание Выборочная проверка стоимости двухкомнатных квартир (тыс.руб.) дала следующие результаты.

- · · j · · · I · · ·									
78,0	76,5	78,5	83,5	81,0	84,5	79,0	87,0	80,5	78,5
83,0	81,0	80,5	78,0	83,0	89,0	89,3	85,0	82,0	84,0
79,0	82,5	83,0	79,5	78,5	79,5	81,1	89,0	91,0	83,0
84,5	86,0	84,0	83,0	84,5	82,5	87,0	84,5	85,0	80,5
84,0	83,5	84,5	85,5	87,0	83,5	85,0	78,5	86,0	82,5
82,0	83,0	80,0	82,0	79,0	82,5	87,0	84,0	85,5	83,0

Требуется:

- 1. Составить статистическое распределение выборки.
- 2. Разбив выборку на k классов (k=1+3,22 ·lgn), построить вариационный ряд, соответствующий этому разбиению. Построить гистограмму относительных частот.
- 3. Вычислить для данной выборки несмещенные оценки математического ожидания, дисперсии, показателей асимметрии и эксцесса, коэффициент вариации.
- 4. С помощью критерия Пирсона проверить гипотезу о нормальном распределении случайной величины X стоимости квартиры при уровне значимости α=0,05.
- 5. Построить график плотности нормального распределения с параметрами x_B и s на том же чертеже, где и гистограмма.
- 6. Найти доверительные интервалы для математического ожидания и среднего квадратического отклонения с надежностью γ=0,95.

Вопросы для самопроверки.

- 1. Доверительный интервал и доверительная вероятность (надежность), их взаимосвязь.
- 2. Генеральная и выборочная доли. Отклонение выборочной доли от постоянной вероятности в независимых испытаниях.
- 3. Доверительный интервал для генеральной доли.
- 4. Теоретические распределения, используемые при интервальном оценивании, условия их использования.
- 5. Интервальная оценка математического ожидания нормального распределения при известном и при неизвестном среднеквадратическом отклонении этого распределения.
- 6. Учет объема выборки при интервальном оценивании.
- 7. Общая схема статистической проверки гипотез.
- 8. Понятия о уровне значимости и критической области.
- 9. Понятие о мощности критерия проверки гипотез.
- 10. Взаимосвязь уровня значимости и мощности критерия.
- 11. Проверка гипотез о равенстве средних и дисперсии.
- 12. Проверка гипотезы о виде закона распределения.
- 13. Понятие о критериях согласия.
- 14. Критерий Пирсона.
- 15. Оценки показателей асимметрии и эксцесса, их смысл.
- 16. Доверительные интервалы для математического ожидания и среднего квадратического отклонения.

Тема 7. Элементы теории корреляции

Задание По данным наблюдений значений X (площадь квартиры, m^2) и Y (цена квартиры, тыс. руб.) для однокомнатных и двухкомнатных квартир получена следующая таблица

X	У	X	У	X	У	X	У	X	У
22,5	71,0	16,0	41,0	37,0	112,0	21,3	65,2	36,7	108,4
15,1	40,5	43,0	121,0	36,0	124,0	20,5	58,5	40,0	105,0
37,0	116,0	37,7	117,0	38,7	130,7	42,7	130,0	20,7	57,0
20,0	65,5	44,0	132,0	32,0	106,2	20,5	73,0	37,0	112,0
39,5	85,0	35,0	114,0	21,4	62,7	43,0	136,0	28,0	85,0
42,4	137,0	22,3	64,5	23,0	70,8	38,5	135,0	22,3	65,1
35,2	97,0	31,0	102,0	29,4	89,5	34,2	106,4	29,7	97,3
33,5	102,0	27,3	66,0	41,5	108,0	27,4	83,1	25,0	77,0
27,5	65,0	36,5	113,0	19,5	51,0	22,0	65,0	26,5	90,0
30,0	94,0	19,2	50,0	34,0	92,0	17,3	55,0	23,0	69,1
44,6	139,0	38,3	117,0	42,5	123,0	30,2	90,0	24,3	78,0
34,0	105,0	42,5	112,0	35,2	130,0	26,8	93,4	26,0	96,1
43,0	134,0	18,0	53,0	38,2	115,0	25,5	83,4	26,5	99,0
38,3	118,0	44,5	140,0	32,5	105,0	26,9	97,0	25,1	81,4
29,3	87,0	38,4	119,0	35,0	110,0	21,4	80,5	44,0	135,0
31,0	99,0	28,4	85,0	29,5	90,0	26,4	90,0	40,0	115,0
25,1	70,0	25,0	78,2	32,0	96,0	25,1	81,5	23,4	70,0
22,3	68,2	27,4	85,0	27,3	85,1	26,5	95,0	26,0	78,8
31,5	94,7	21,5	63,0	30,0	94,0	42,0	110,0	30,5	92,7
26,5	79,9	25,0	77,2	21,5	64,2	34,0	103,0	23,5	79,0

Найти выборочный коэффициент корреляции и выборочные уравнения прямых регрессии.

Вопросы для самопроверки.

- 1. Функциональная, статистическая и корреляционная зависимости. Независимость и коррелированность случайных величин.
- 2. Линейная корреляция. Уравнения прямых регрессии.
- 3. Выборочный коэффициент корреляции.

4. ОСНОВНАЯ И ДОПОЛНИТЕЛЬНАЯ УЧЕБНАЯ ЛИТЕРАТУРА, НЕОБХОДИМАЯ ДЛЯ ОСВОЕНИЯ ДИСЦИПЛИНЫ (МОДУЛЯ)

- 1. Балдин, К.В. Теория вероятностей и математическая статистика: учебник / К.В. Балдин, В.Н. Башлыков, А.В. Рукосуев. - 2-е изд. - М.: Издательско-торговая корпорация «Дашков и К°», 2016. - 472 с. : ил. - Библиогр.: с. 433-434. - ISBN 978-5-394-02108-4; То же [Электронный ресурс]. -URL: http://biblioclub.ru/index.php?page=book&id=453249
- 2. Колемаев, В.А. Теория вероятностей и математическая статистика: учебник / В.А. Колемаев, В.Н. Калинина. - М.: Юнити-Дана, 2015. - 352 с.: табл. - ISBN 5-238-00560-1; То же [Электронный ресурс]. -URL: http://biblioclub.ru/index.php?page=book&id=436721
- 3. Джафаров, К.А. Теория вероятностей и математическая статистика: учебное пособие / К.А. Джафаров; Министерство образования и науки Российской Федерации, Новосибирский государственный технический университет. -Новосибирск: HГТУ, 2015. - 167 с.: схем. - Библиогр. в кн. - ISBN 978-5-7782-2720-0; То же [Электронный ресурс]. -URL: http://biblioclub.ru/index.php?page=book&id=438304
- 4. Новосельцева, М.А. Теория вероятностей и математическая статистика: учебное пособие / М.А. Новосельцева; Министерство образования и науки Российской Федерации, Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования «Кемеровский государственный университет», Кафедра автоматизации исследований и технической кибернетики. - Кемерово : Кемеровский государственный университет, 2014. - 104 с.: ил. - Библиогр. в кн. - ISBN 978-5-8353-1764-6; То же [Электронный ресурс]. - URL: http://biblioclub.ru/index.php?page=book&id=278497
- 5. Балдин, К.В. Теория вероятностей и математическая статистика: учебник / К.В. Балдин, В.Н. Башлыков, А.В. Рукосуев. - 2-е изд. - М.: Издательско-торговая корпорация «Дашков и К°», 2016. - 472 с. : ил. - Библиогр.: с. 433-434. - ISBN 978-5-394-02108-4; То же [Электронный ресурс]. -

URL: http://biblioclub.ru/index.php?page=book&id=453249

5. РЕСУРСЫ ИНФОРМАЦИОННО-ТЕЛЕКОММУНИКАЦИОННОЙ СЕТИ "ИНТЕРНЕТ", НЕОБХОДИМЫЕ ДЛЯ ОСВОЕНИЯ ДИСЦИПЛИНЫ (МОДУЛЯ)

№ п/п	Интернет ресурс (адрес)	Описание ресурса
1.	www.intuit.ru/	INTUIT.ru: Интернет Университет
		Информационных Технологий -
		бесплатное дистанционное образование

	компьютерным дисциплинам.

7.

6. ИНФОРМАЦИОННЫЕ ТЕХНОЛОГИИ, ИСПОЛЬЗУЕМЫЕ ПРИ ОСУЩУСТВЛЕНИИ ОБРАЗОВАТЕЛЬНОГО ПРОЦЕССА ПО ДИСЦИПЛИНЕ (МОДУЛЮ), ВКЛЮЧАЯ ПЕРЕЧЕНЬ ПРОГРАММНОГО ОБЕСПЕЧЕНИЯ И ИНФОРМАЦИОННЫХ СПРАВОЧНЫХ СИСТЕМ

ПРОГРАММНОЕ ОБЕСПЕЧЕНИЕ И ИНФОРМАЦИОННЫЕ СПРАВОЧНЫЕ СИСТЕМЫ

нет

7. ТИПОВЫЕ КОНТРОЛЬНЫЕ ЗАДАНИЯ ИЛИ ИНЫЕ МАТЕРИАЛЫ, НЕОБХОДИМЫЕ ДЛЯ ОЦЕНКИ ЗНАНИЙ, УМЕНИЙ, НАВЫКОВ И (ИЛИ) ОПЫТА ДЕЯТЕЛЬНОСТИ, ХАРАКТЕРИЗУЮЩИХ ЭТАПЫ ФОРМИРОВАНИЯ КОМПЕТЕНЦИЙ В ПРОЦЕССЕ ОСВОЕНИЯ ОБРАЗОВАТЕЛЬНОЙ ПРОГРАММЫ

Этап формирования компетенций в процессе изучения дисциплины характеризуется следующими типовыми контрольными заданиями

Для текущего контроля успеваемости студентов разработана контрольная работа по основным темам дисциплины:

Сафронова И.В. Теория вероятностей: Сборник задач к контрольной работе. Челябинск, УрСЭИ.- 2011. -60 с.

Волохова К.И., Сафронова И.В. Теория вероятностей: Сборник задач к контрольной работе. Челябинск, УрСЭИ.- 2011. -40 с.

Типовые контрольные вопросы для подготовки к экзамену при проведении промежуточной аттестации по дисциплине

- 1. Основные понятия теории вероятностей.
- 2. Основные подходы к определению вероятности: классическое определение вероятности, геометрическая вероятность, статистический подход.
- 3. Алгебра событий.
- 4. Сумма и произведение событий.
- 5. Несовместные события.
- 6. Полная группа событий.
- 7. Противоположные события.
- 8. Вероятность суммы событий.
- 9. Зависимость событий.
- 10. Условные вероятности.
- 11. Вероятность произведения событий.
- 12. Формула полной вероятности и формулы Байеса.
- 13. Дискретные случайные величины.
- 14. Распределение вероятностей дискретной случайной величины.
- 15. Числовые характеристики случайных величин (математическое ожидание, дисперсия, моменты, мода, медиана).
- 16. Биномиальный закон распределения, формула Бернулли. Числовые характеристики
- 17. Распределение Пуассона. Числовые характеристики
- 18. Геометрическое распределение. Числовые характеристики
- 19. Гипергеометрическое распределение. Числовые характеристики
- 20. Функция распределения.

- 21. Непрерывные случайные величины, плотность вероятности.
- 22. Равномерное распределение.
- 23. Показательное распределение, функция надёжности.
- 24. Нормальный закон распределения Гаусса.
- 25. Свойства функции Лапласа.
- 26. Правило трёх сигма.
- 27. Примеры построения системы дискретных случайных величин.
- 28. Условные математические ожидания и функции регрессии.
- 29. Корреляционный момент, коэффициент корреляции системы.
- 30. Функция распределения и плотность распределения вероятностей системы непрерывных случайных величин.
- 31. Поведение среднего арифметического.
- 32. Относительная частота события.
- 33. Понятие о теореме Бернулли и законе больших чисел. Роль нормального распределения: понятие о центральной предельной теореме.
- 34. Локальная и интегральная формулы Лапласа.
- 35. Понятие случайного процесса.
- 36. Марковские случайные процессы с дискретными состояниями, с дискретным и непрерывным временем.
- 37. Система уравнений Колмогорова.
- 38. Предельный стационарный режим, эргодический процесс.
- 39. Процесс гибели и размножения.
- 40. Понятие систем массового обслуживания. Простейший поток и его свойства.
- 41. Выборка, статистическое распределение.
- 42. Полигон и гистограмма.
- 43. Эмпирическая функция распределения.
- 44. Понятие точечной статистической оценки. Свойства оценок.
- 45. Интервальная оценка, её точность и надёжность.
- 46. Интервальная оценка математического ожидания нормального распределения (большая и малая выборки).
- 47. Интервальная оценка генеральной доли альтернативного признака.
- 48. Понятие статистической гипотезы
- 49. Гипотезы о генеральной средней нормального распределения, о равенстве двух генеральных средних.
- 50. Эмпирические и теоретические частоты, гипотеза о виде распределения, критерий согласия Пирсона.
- 51. Корреляционный анализ несгруппированных данных.
- 52. Выборочный коэффициент линейной корреляции и гипотеза о его значимости.
- 53. Линейный регрессионный анализ, метод наименьших квадратов.
- 54. Применение корреляционно-регрессионного анализа в социально-экономических задачах.

Критерии оценки изложены в шкале оценки для проведения промежуточной аттестации по лисциплине в п.6.2.

Типовые практические задачи (задания, тесты) билетов для проведения промежуточной аттестации по дисциплине

ИТОГОВОЕ ЗАДАНИЕ ПО ДИСЦИПЛИНЕ

Для текущего контроля усвоения теоретического материала предусмотрено контрольное тестирование в системе Quest, тест № 770.

Тестовое задание

Вопрос 1. Как называется величина, которая в результате опыта может принять то или иное значение, причем неизвестно заранее, какое именно?

Варианты ответов

- 1) Случайная величина
- 2) Неизвестная величина
- 3) Переменная величина

Правильный ответ: 1

Вопрос 2. Является ли случайной величиной число вызовов, поступивших на телефонную станцию за сутки?

Варианты ответов

- 1) Да
- 2) Нет
- 3) В зависимости от вида телефонной станции

Правильный ответ: 1

Вопрос 3. Как называется случайная величина, которая принимает значения из множества {0;0,1;0,2;...;1,0}

Правильный ответ: \$дискретн\$

Вопрос 4. Для какого типа случайных величин их функции распределения являются разрывными ступенчатыми функциями?

Варианты ответов

- 1) Дискретных
- 2) Непрерывнычх
- 3) Для любых случайных величин

Правильный ответ: 1

Вопрос 5. Пусть с - неслучайная, а X - случайная величины. Какое из слудующих равенств является правильным?

Предложение: Отметьте мышью правильный вариант ответа и нажмите кнопку Готово Варианты ответов

- 1) M[cX] = X
- 2) M[cX] = 0
- 3) M[cX] = cM[X]

Правильный ответ: 3

Обучающий материал

Вопрос 6. Задает ли закон распределения дискретной случайной величины следующая таблица?

X	6	7	8	9
р	0,1	0,2	0,3	0,5

Варианты ответов

- 1) Да
- 2) Heт
- 3) Для ответа на вопрос недостаточно данных

Правильный ответ: 2

Вопрос 7. X - дискретная случайная величина, её многоугольник распределения имеет вид:

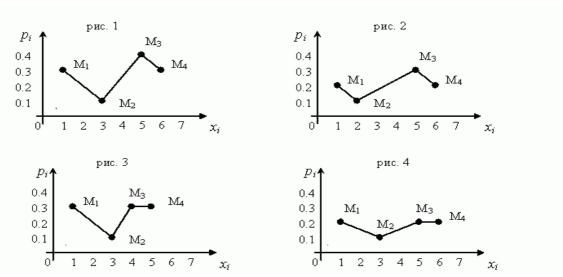


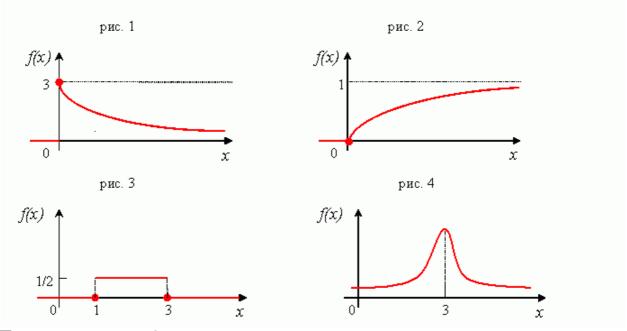
Рисунок к вопросу: Юля1.gif

Варианты ответов

Правильный ответ: 3

Вопрос 8. В коробке 10 деталей. Из них 7 стандартных и 3 нестандартных. Наудачу отобраны 4 детали. Случайная величина X - число нестандартных деталей среди отобранных. Какова вероятность, что X - примет значение равное 1?

Правильный ответ: #0,5;0.5#


Вопрос 9. Формулу Пуассона используют, если

Варианты ответов

- 1) Число испытаний мало, вероятность появления события в каждом испытании очень мала
- 2) Число испытаний велико, вероятность появления события в каждом испытании очень мала
- 3) Число испытаний велико , вероятность появления события в каждом испытании близка к 1
 - 4) Верный ответ отсутствует

Правильный ответ: 2

Вопрос 10. Непрерывная случайная величина X - распределена равномерно. Ее плотность распределения имеет график

Правильный ответ: 3

Вопрос 11. X - дискретная случайная величина, её закон распределения имеет вид: **Предложение:** Отметьте мышью правильный вариант ответа и нажмите кнопку Готово **Варианты ответов**

	1)	•						
X	1	2	3		4			
p	0	-1	1		0.5			
	2)							-
X	1	2		3		4		
p	0.4	0.3		0.1	5	0.	05	
	3)							
X	1	2		3		4	1	
p	0,43	0,23	i	0,3	31	(0.029	
	4)							
X	1	2		3		4		
p	0.13	0.15	i	0.4	7	0.	25	

Правильный ответ: 1

Вопрос 12. Как в математической статистике называется задача анализа согласованности данных эксперимента с гипотезой о распределении случайной величины?

Варианты ответов

- 1) Задача проверки правдоподобия гипотез
- 2) Выравнивание статистических рядов
- 3) Нахождение оценок неизвестных параметров

Правильный ответ: 1

Обучающий материал

Вопрос 13. Как в математической статистике называется задача представления выборочнхых данных в наиболее компактном виде?

Предложение: Отметьте мышью правильный вариант ответа и нажмите кнопку Готово **Варианты ответов**

- 1) Составление статистического ряда
- 2) Проверка правдоподобия гипотез
- 3) Нахождение неизвестных параметров

Правильный ответ: 1

Вопрос 14. Какая статистика является несмещенной оценкой математического ожидания?

$$S^{2} = \frac{\sum_{i=1}^{n} (x_{i} - \overline{x})^{2}}{n}$$

$$S^{2} = \frac{\sum_{i=1}^{n} (x_{i} - \overline{x})^{2}}{n}$$
 b). $M_{3} = \frac{\sum_{i=1}^{n} (x_{i} - \overline{x})^{3}}{n}$

$$\overline{x} = \frac{\sum_{i=1}^{n} x_i}{n}$$

$$\bar{x} = \frac{\sum_{i=1}^{n} x_i}{n}$$
 d). $M_3 = \frac{\sum_{i=1}^{n} (x_i - \bar{x})^3}{n}$

Варианты ответов

- 1) a)
- 2) b)
- 3) c)
- 4) d)

Правильный ответ: 3

Обучающий материал

Вопрос 15. Какая статистика является несмещенной оценкой генеральной дисперсии?

a).
$$D = \frac{\sum_{i=1}^{n} (x_i - \overline{x})^2}{n}$$

b).
$$S^2 = \frac{\sum_{i=1}^{n} (x_i - \overline{x})^2}{n-1}$$

$$c). \quad \overline{x} = \frac{\sum_{i=1}^{n} x_i}{n}$$

$$d). \quad M = \frac{\sum_{i=1}^{n} (x_i - \bar{x})}{n}$$

Варианты ответов

- 1) a)
- 2) b)
- 3) c)
- 4) d)

Правильный ответ: 2

Вопрос 16. Какая оценка параметра называется несмещенной?

Варианты ответов

- 1) если дисперсия оценки является минимальной
- 2) если математическое ожидание оценки равно значению оцениваемого параметра
- 3) если оценка приближается к точному значению параметра при увеличении числа опытов

Правильный ответ: 2

Вопрос 17. Какая оценка параметра называется эффективной?

Варианты ответов

- 1) если дисперсия оценки является минимальной
- 2) если математическое ожидание оценки равно значению оцениваемого параметра
- 3) если оценка приближается к точному значению параметра при увеличении числа опытов

Правильный ответ: 1

Вопрос 18. Какая оценка параметра называется состоятельной?

Варианты ответов

- 1) если дисперсия оценки является минимальной
- 2) если математическое ожидание оценки равно значению оцениваемого параметра
- 3) если оценка приближается к точному значению параметра при увеличении числа опытов

Правильный ответ: 3

Вопрос 19. Из партии в 2000 деталей отобрано 200, среди них 184 - стандартных. Найте вероятность того, что доля деталей нестандартных деталей во всей партии отличается от выборочной доли не более чем на 2%.

Правильный ответ: 0,729

Обучающий материал

Вопрос 20. Что называют ошибкой первого рода при проверке статистических гипотез?

Варианты ответов

- 1) гипотеза Н0 верна и ее принимаютс согласно критерию
- 2) гипотеза Н0 верна и ее отвергают согласно критерию
- 3) гипотеза Н0 не верна и ее отвергают согласно критерию
- 4) гипотеза Н0 не верна и ее принимают согласно критерию

Правильный ответ: 2

Вариант 2

Вопрос 1. Является ли случайной величиной число вызовов, поступивших на телефонную станцию за сутки?

Варианты ответов

- 1) Да
- 2) Heт
- 3) В зависимости от вида телефонной станции

Правильный ответ: 1

Вопрос 2. Для какого типа случайных величин каждое отдельное ее значение имеет нулевую вероятность?

Варианты ответов

- 1) Дискретных
- 2) Непрерывных
- 3) Для любых случайных величин

Правильный ответ: 2

Обучающий материал

Вопрос 3. Каким из свойств обладает любая функция распределения случайной величины?

Варианты ответов

- 1) неубывающая
- 2) невозрастающая
- 3) немонотонная

Правильный ответ: 1

Вопрос 4. Для какого типа случайных величин их функции распределения являются разрывными ступенчатыми функциями?

Варианты ответов

- 1) Дискретных
- 2) Непрерывнычх
- 3) Для любых случайных величин

Правильный ответ: 1

Вопрос 5. Как называется число, характеризующее степень разбросанности значений случайной величины около математического ожидания?

Варианты ответов

- 1) Дисперсия
- 2) Среднее квадратическое отклонение
- 3) Доверительная вероятность

Правильный ответ: 2

Вопрос 6. Пусть С - неслучайная величина (константа). Какое из следующих равеств является правильным:

Варианты ответов

- 1) M[C] = 1
- 2) M[C] = C
- 3) M[C] = 0

Правильный ответ: 2

Вопрос 7. Пусть с - неслучайная величина (константа). Какое из следующих равенств является правильным?

Варианты ответов

- 1) D[c] = 1
- 2) D[c] = 0
- 3) D[c] = c

Правильный ответ: 2

Вопрос 8. В пункте продажи билетов моментальной лотерии продано 100 билетов. Установлены следующие выигрыши: 1 - 1500p; 2 - 1000p; 5 - 500p. Каково наиболее вероятное значение выигрыша?

Правильный ответ: 60

Вопрос 9. Задает ли закон распределения дискретной случайной величины следующая таблица?

X	6	7	8	9
p	0,1	0,2	0,3	0,5

Варианты ответов

- 1) Да
- 2) Her
- 3) Для ответа на вопрос недостаточно данных

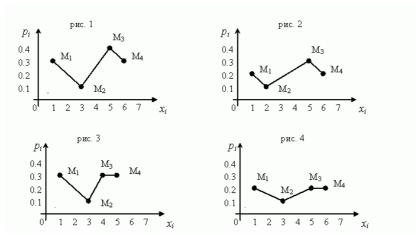
Правильный ответ: 2

Вопрос 10. Дискретная случайная величина имеет следующий ряд распределения. Найти среднее квадратическое отклонение?

X	0	1	2
р	0.3	0.5	0.2

Правильный ответ: 0,7

Вопрос 11. Случайная величина распределена по нормальному закону с параметрами.


Найти вероятность того, что X примет значение, принадлежащее интервалу (10:50).

$$a = 30$$

$$\sigma = 10$$

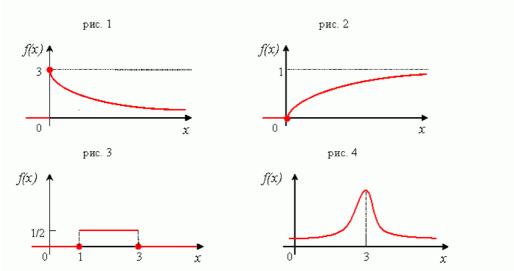
Правильный ответ: 0,954

Вопрос 12. X - дискретная случайная величина, её многоугольник распределения имеет вил:

Правильный ответ: 3

Вопрос 13. В коробке 10 деталей. Из них 7 стандартных и 3 нестандартных. Наудачу отобраны 4 детали. Случайная величина X - число нестандартных деталей среди отобранных. Сколько различных возможных значений может принимать X?

Правильный ответ: !4!


Вопрос 14. Формулу Пуассона используют, если

Варианты ответов

- 1) Число испытаний мало, вероятность появления события в каждом испытании очень мала
- 2) Число испытаний велико, вероятность появления события в каждом испытании очень мала
- 3) Число испытаний велико , вероятность появления события в каждом испытании близка к 1
 - 4) Верный ответ отсутствует

Правильный ответ: 2

Вопрос 15. Непрерывная случайная величина X - распределена по показательному закону. Ее плотность распределения имеет график

Варианты ответов

Правильный ответ: 1

Вопрос 16. Непрерывная случайная величина X - распределена по показательному закону, $\square \square \square \square \square \square \square$ Найти среднее квадратическое отклонение X.

Правильный ответ: !0,5;0.5!

Вопрос 16. Что является предметом изучения в математической статистике? Варианты ответов

- 1) Методы регистрации, описания и анализа экспериментальных данных в массовых случайных явлениях
 - 2) Закономерности в случайных явлениях
 - 3) Анализ зависимостей среднего значения случайных величин от различных факторов

Правильный ответ: 1

Вопрос 17. Как в математической статистике называется приближенное случайное значение искомого параметра случайной величины, вычисленное на основе ограниченного числа опытов?

Варианты ответов

- 1) оценка параметра
- 2) математическое ожидание
- 3) выборочное среднее
- 4) выборочная дисперсия

Правильный ответ: 1

Вопрос 18. Какая статистика является несмещенной оценкой генеральной дисперсии?

$$a). \quad D = \frac{\sum_{i=1}^{n} (x_i - \overline{x})^2}{n}$$

b).
$$S^2 = \frac{\sum_{i=1}^{n} (x_i - \overline{x})^2}{n-1}$$

c).
$$\bar{x} = \frac{\sum_{i=1}^{n} x_i}{n}$$

$$d). \quad M = \frac{\sum_{i=1}^{n} (x_i - \overline{x})}{n}$$

Варианты ответов

- 1) a)
- 2) b)
- 3) c)
- 4) d)

Правильный ответ: 2

Вопрос 19. Какая оценка параметра называется несмещенной?

Варианты ответов

- 1) если дисперсия оценки является минимальной
- 2) если математическое ожидание оценки равно значению оцениваемого параметра
- 3) если оценка приближается к точному значению параметра при увеличении числа опытов

Правильный ответ: 2

Вопрос 20. Какая оценка параметра называется состоятельной?

Варианты ответов

- 1) если дисперсия оценки является минимальной
- 2) если математическое ожидание оценки равно значению оцениваемого параметра
- 3) если оценка приближается к точному значению параметра при увеличении числа опытов

Правильный ответ: 3